
Auto-Vectorization for Lattice-Based Cryptographic Primitives
Camille Bossut

cbossut21@gatech.edu
Georgia Institute of Technology

USA

Qirun Zhang
qrzhang@gatech.edu

Georgia Institute of Technology
USA

1 ABSTRACT
As encryption is ubiquitous in today’s world, the implementations
of cryptographic algorithms must be both secure and fast. Encryp-
tion algorithms are often the targets of aggressive and meticulous
manual optimization due to this speed requirement. Cryptography
has evolved rapidly in recent years. In 2017, NIST (National Insti-
tute of Standards and Technology) made a call for post-quantum
cryptographic protocols. The proposed algorithms should not break
under a sufficiently powerful implementation of Shor’s algorithm,
a quantum-computing based algorithm which achieves integer fac-
torization in polynomial time.

The three finalists for the new post-quantum cryptography stan-
dard, as chosen by NIST, are Kyber [4], Saber [5], and NTRU Prime
[3]. All three algorithms are lattice-based, and all three incorpo-
rate hand-optimized assembly for AVX2 and NEON [11] which use
SIMD instructions to exploit instruction-level parallelism in matrix
operations.

With each new encryption scheme and algorithm, experts write
hand-optimized assembly to achieve competitive performance. These
hand-optimizations are expensive, time-consuming, and bug-prone.
If an algorithm changes or a modification is released, the assembly
must be changed. If the ISA changes for a target architecture, the
previous implementation may become deprecated or sub-optimal,
meaning the assembly must also be re-written. SIMD instructions
are useful for both big-integer operations and matrix-based opera-
tions, the latter of which are frequent in lattice-based crytography.
However, compilers often do not output the optimal implementa-
tion for each target architecture. The efficacy of auto-vectorization
in modern compilers like GCC or Clang is heavily affected by the
structure of the source code.

To mitigate the issue of human error introduced in handwrit-
ten assembly, some work attempts to verify assembly code. For
example, the number-theoretic transform, or NTT, is an essential
and frequent operation in lattice-based cryptography, and author
Hwang verifies an NTT implementation for the Intel AVX2 instruc-
tion set [7]. The trouble with assembly verification is that it is
usually done on a small portion of an overall scheme, rather than
the scheme in its entirety. Ultimately, a compiler must be trusted
to link the verified implementation with the rest of the code.

Other work aims to formally verify entire cryptographic proto-
cols. Fiat cryptography [6] automatically generates straight-line
code for cryptographic primitives from COQ proofs; thus the gen-
erated code is verified. CryptOpt [8] further seeks to optimize this
generated code using a random-local-search approach. Neither
target cryptographic primitives for lattice-based protocols, and nei-
ther support the generation of SIMD instructions. Additionally,
the code output from these tools cannot compete with the equiva-
lent hand optimized assembly, though the output performs better
than a naively compiled version. HACL* [13] presents a verified

Figure 1: Workflow for source-code transformation.

set of cryptographic primitives in F, and HACLxN [12] is an exten-
sion which presents some verified SIMD cryptographic primitives
as well. These HACL libraries also do not contain cryptographic
primitives for lattice-based cryptography.

CompCert [9] is a functional verified C-compiler, and authors
Barthe and Blazy [2] verified that a slightly modified CompCert is
constant-time preserving. However GCC and Clang are used more
often to compile deployed versions of cryptographic protocols, since
their optimizations are much more aggressive than CompCert, thus
their output is much faster than what CompCert can produce.

Our aim is a middle ground of optimization and verifiable cor-
rectness for vectorized cryptographic primitives; we choose to trust
modern compilers but not handwritten assembly. Developers al-
ready put trust in modern compilers, since the official versions of
the proposed lattice-based protocols use them in their compilation
tool-chain. Our optimization targets straight-line cryptographic
primitives for lattice-based cryptography. Our goal is to guide com-
pilers’ existing auto-vectorization through hints given via source-
code transformation to get the best vector instruction generation.
Our approach is iterative: we learn what vectorization the com-
piler missed from its optimization pass information, and why it
didn’t apply certain optimizations. Then we transform the input
code to make the parallelism more obvious to the compiler. We
want our output to improve upon the default compiler behavior,
and ultimately compete with hand-optimized versions. Our insight
is that the structure of the source code influences which vector-
instruction optimizations the compiler will try to apply. However,
writing source code with the compiler in mind is at odds with leg-
ibility of the source code, making it easier to introduce bugs just
like in handwritten assembly. We verify our source-code transfor-
mations to ensure that they are (1) correct and (2) not violating the
constant time properties required by cryptographic primitives. The
workflow of our tool is as shown in Figure 1.

The code transformer takes advantage of common matrix opera-
tion patterns in lattice-based protocols. It attempts to auto-vectorize
the primitives in these schemes. It learns data dependency and
vectorization information from the output assembly and from the
compilers’ optimization pass output. For example, the compiler
may reveal that vectorization was attempted but not sucessful due



Camille Bossut and Qirun Zhang

Figure 2: Butterfly pattern of operations in the NTT and
inverse NTT algorithms.

to possible aliasing. Then, our transformer modifies the source
code to reflect what it has learned or use some domain specific
knowledge to rule out the optimization-preventing code property.
Hints are given through code structure, compiler-specific anno-
tations, vector intrinsics, and built-in functions, thus telling the
compiler how and where to aggressively parallelize. As our input
programs are straight-line constant-time programs which operate
on large matrices, we can generate large data dependency graphs
for nested loops and aggressively parallelize with our knowledge
of the loop and matrix structure. Compilers alone may not always
unroll loops when possible since loop unrolling is performed based
on cost heuristics. Therefore, all vectorization possibilities are not
be checked by default. Also, certain vector operations like permu-
tation may not be likely to generate better code in general, but in
the domain of lattice-based cryptography vector permutation is
particularly useful, so we more aggressively search for places to
use this operation.

The code surrounding a cryptographic primitive call is also key
to our code transformations. There are many different implemen-
tations of cryptographic primitives like addition, multiplication,
and modular reduction over finite fields. For instance, many lattice-
based cryptography algorithms use Barrett reduction [1] for their
modular reduction scheme, however in certain cases Montgomery
reduction [10] is preferable. These primitives are chosen within
a scheme based on their time complexity and the known input
size, rather than with compiler optimizations in mind. The imple-
mentation which generates the best performing code may actually
depend on the code around it. Another instance where code context
is important; if a primitive is called from within a loop, inlining
this function may open the door for SIMD instruction generation.
We can target primitives used in loops with static analysis to see
if inlining is possible. In this same context, it may be worth doing
static analysis to see if its arguments are constant or un-aliased.
The absence of these explicit conditions in the function header may
have prevented possible vectorization within the cryptographic
primitive.

Case study of the NTT. The NTT and the inverse NTT both
follow a butterfly-type operation interleaving pattern as shown in
Figure 2. The nodes labeled zero to three represent matrix indices,
and arrows between nodes represent a data dependence between
the source node and the destination node. We operate on straight-
line code, so we can unroll any loops in the reference C code. We

unroll the loop and group iterations to achieve the best parallelism
at each stage. The non-interfering operations at the same stage
can be done concurrently; we look for this pattern of instruction
grouping and encourage the compilers to take advantage of it using
the aforementioned hints. With the knowledge of this pattern and
the source code loop structure, we can tell the compiler where
the barriers between stages should be, and aggressively parallelize
within a stage. We could lose this information if we only had access
to an assembly implementation of the NTT, as it would be harder
to recover the clear barriers between stages as shown in Figure 2.

The primary challenge of this work is ensuring it performs well
on different target architectures. We use dynamic instruction count,
CPU cycle count, and timing measurements to compare perfor-
mance of the transformed source code. We use two compilers (GCC
and Clang) to compile the transformed code and get optimization
pass information, which we ultimately turn into source code hints.
Since our process is iterative, it collects information about the vec-
torization options on the target architecture which influence the
source code transformations. We ensure that our approach is gen-
eral by testing it on architectures with different maximum vector
sizes.

The goal of this work is to help bridge the gap between handwrit-
ten and auto-generated SIMD code for lattice-based cryptography.
We use domain specific knowledge to guide source code trans-
formation and anticipate certain access patterns to aggressively
parallelize operations better than the compiler alone.We summarize
our contributions as follows:

• Source-code level transformations which reveal instruction-
level parallelism to compilers in lattice-based cryptographic
primitives.

• Analysis of compiler optimization passes to choose an ap-
propriate source code transformation.

• Verification that the transformations are correct and constant-
time preserving.

In future work, we could apply this approach to other applica-
tions which benefit from instruction level-parallelism with charac-
teristic patterns.

REFERENCES
[1] P. Barrett. Implementing the rivest shamir and adleman public key encryption

algorithm on a standard digital signal processor. In A. M. Odlyzko, editor,
Advances in Cryptology — CRYPTO’ 86, pages 311–323, Berlin, Heidelberg, 1987.
Springer Berlin Heidelberg.

[2] G. Barthe, S. Blazy, B. Grégoire, R. Hutin, V. Laporte, D. Pichardie, and A. Trieu.
Formal verification of a constant-time preserving c compiler. Proc. ACM Program.
Lang., 4 (POPL), dec 2019.

[3] D. J. Bernstein, C. Chuengsatiansup, T. Lange, and C. van Vredendaal. Ntru
prime: reducing attack surface at low cost. Cryptology ePrint Archive, Paper
2016/461, 2016. https://eprint.iacr.org/2016/461.

[4] J. Bos, L. Ducas, E. Kiltz, T. Lepoint, V. Lyubashevsky, J. M. Schanck, P. Schwabe,
G. Seiler, and D. Stehle. Crystals - kyber: A cca-secure module-lattice-based
kem. In 2018 IEEE European Symposium on Security and Privacy (EuroSP), pages
353–367, 2018.

[5] J.-P. D’Anvers, A. Karmakar, S. Sinha Roy, and F. Vercauteren. Saber: Module-lwr
based key exchange, cpa-secure encryption and cca-secure kem. In A. Joux,
A. Nitaj, and T. Rachidi, editors, Progress in Cryptology – AFRICACRYPT 2018,
pages 282–305. Springer International Publishing, 2018.

[6] A. Erbsen, J. Philipoom, J. Gross, R. Sloan, and A. Chlipala. Simple high-level
code for cryptographic arithmetic - with proofs, without compromises. In 2019
IEEE Symposium on Security and Privacy (SP), pages 1202–1219, 2019.

[7] S. S. T. W. Y. Hwang, Liu. Verified ntt multiplications for nistpqc kem lattice
finalists: Kyber, saber, and ntru. volume 2022, page 718–750, Aug. 2022.

https://eprint.iacr.org/2016/461


Auto-Vectorization for Lattice-Based Cryptographic Primitives

[8] J. Kuepper, A. Erbsen, J. Gross, O. Conoly, C. Sun, S. Tian, D. Wu, A. Chlipala,
C. Chuengsatiansup, D. Genkin, M. Wagner, and Y. Yarom. Cryptopt: Verified
compilation with randomized program search for cryptographic primitives. Proc.
ACM Program. Lang., 7(PLDI), jun 2023.

[9] X. Leroy. Formal verification of a realistic compiler. Commun. ACM,
52(7):107–115, jul 2009.

[10] P. L. Montgomery. Modular multiplication without trial division. Mathematics
of Computation, 44:519–521, 1985.

[11] D. T. Nguyen, K. Gaj, and G. Mason. Optimized software implementations of
crystals-kyber, ntru, and saber using neon-based special instructions of armv8.

2021.
[12] M. Polubelova, K. Bhargavan, J. Protzenko, B. Beurdouche, A. Fromherz, N. Ku-

latova, and S. Zanella-Béguelin. Haclxn: Verified generic simd crypto (for all
your favourite platforms). In Proceedings of the 2020 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’20, page 899–918, New York, NY,
USA, 2020. Association for Computing Machinery.

[13] J. K. Zinzindohoue, K. Bhargavan, J. Protzenko, and B. Beurdouche. Hacl*:
A verified modern cryptographic library. Cryptology ePrint Archive, Paper
2017/536, 2017. https://eprint.iacr.org/2017/536.

https://eprint.iacr.org/2017/536

	1 Abstract
	References

