
Faster SMT Solving via Constraint Transformation
Benjamin Mikek
bmikek@gatech.edu

Georgia Institute of Technology
USA

Qirun Zhang
qrzhang@gatech.edu

Georgia Institute of Technology
USA

Satisfiability Modulo Theories (SMT) constraints are first-order
logical formulas with functions and variables from various theo-
ries, such as real numbers, integers, bitvectors and floating-point
numbers. Many program analysis tools generate SMT constraints
over the bounded theories of bitvectors and floating-point num-
bers. SMT solving of these theories is therefore central to program
analysis applications such as symbolic execution [8, 14], program
synthesis [7, 12], and program verification [5, 13]. The unbounded
theories of real numbers and integers provide the foundation for
yet more tools. For example, real number constraints are useful in
modeling automata [9], while integer arithmetic has been used to
encode the constant multiplication problem [17] and in developing
better answer set programming techniques [22].

The performance of practical tools is directly tied to the perfor-
mance of solvers; when solvers can handle problems quickly, the
tools perform better. For example, in symbolic execution, reducing
solving time equates to greater code coverage [8]. State-of-the-art
solvers for SMT constraints, including CVC5 [2] and Z3 [11], use a
complex mix of heuristics, theory-specific engines, and SAT solver
calls to efficiently reason about a problem. Yet many constraints
still take a prohibitively long time to solve, reducing the usefulness
of solver-supported tools to end users.

The most popular approach to speeding up SMT solving has been
to embed new and more powerful strategies within solvers. These
have sometimes taken the form of new solvers like Boolector [19], or
of new algorithms in existing solvers. For example, Berzish et al. [4]
introduce new heuristics for string constraints involving regular
expressions while Bjørner et al. [6] improve Z3’s performance for
custom theories. Reynolds et al. develop many optimizing rewriting
rules [20] for the bitvector theory, which improves the performance
of counterexample-guided solving [21]. FastSMT [1] speeds up
solving by using machine learning to select solver heuristics.

We propose a new perspective on speeding up SMT solving:
instead of focusing on solver internals, we turn our attention to
constraints. Our key insight is that pre-processing constraints be-
fore passing them to a solver can simplify the constraints, reduce
the solver’s workload, and thereby speedup solving. Our strategy
has three conceptual advantages. First it allows solver users to ben-
efit from better performance without detailed knowledge of solver
internals. Second, since our approach pre-processes constraints, it
can be used with any solver(s). Third, it allows the introduction of
simplification strategies originating outside the SMT domain.
SMT-LLVM Optimizing Translation
In existing work [16], we instantiate the pre-processing approach
and show its usefulness by harnessing the power of compiler opti-
mization. Our insight is to repurpose existing compiler optimization
techniques to the SMT problem. In particular, we develop SMT-
LLVM Optimizing Translation (SLOT), which can directly optimize
input SMT-LIB formulas.

While most constraint optimization strategies have focused on
transforming SMT formulas themselves, SLOT bypasses the need
to implement simplifications within a solver by translating the
constraints into LLVM IR and then applying LLVM’s existing opti-
mization passes. While not all compiler optimizations are useful for
the SMT context, the combination of SLOT with existing solvers
creates a sieve: some constraints are caught quickly by existing
solver heuristics, while others are handled better by SLOT.

We have implemented SLOT for the SMT theories of bitvectors
and floating-point numbers. Constraints in these theories are the
most relevant to software engineering because they model ma-
chine arithmetic; for example, they are used in practical tools for
symbolic execution [8], translation validation [15], and program
synthesis [7]. In addition, we provide proof that the semantics of
these two theories can be exactly represented in LLVM IR. The
key challenge for SLOT is bridging the substantial semantic gap
between SMT constraints and LLVM IR. Translation is particularly
challenging because the languages, one declarative and the other
imperative, were designed for entirely different purposes.

As shown in Figure 1, SLOT consists of three components: a fron-
tend which converts SMT constraints to LLVM IR, the optimizer,
which optimizes IR code, and a backend, which translates IR func-
tions back into SMT constraints. While many SMT-LIB functions
have direct equivalents in LLVM (bitvector addition, or floating–
point division, for example), the semantics of the languages differ in
subtle ways. For instance, bitvector division in LLVM is undefined
for some inputs on which it is defined in SMT-LIB. SMT-LIB is
missing definitions of several critical LLVM bit operation intrinsics
such as counting set bits, while LLVM is missing some SMT-LIB op-
erations like bvsmod. We bridge the gap by developing a one-to-one
mapping between SMT-LIB function applications and sequences of
LLVM instructions.

We have evaluated our translation and optmization strategy
on more than 100,000 benchmarks from the SMT-LIB benchmark
set—those for bitvectors, floating-point numbers, and their combi-
nation [3]. SLOT is able to produce output constraints which are
equisatisfiable to the original for every benchmark which does not
time out, empirically validating our proofs of the correctness of
frontend and backend translation. Since the purpose of compiler op-
timizations is to simplify instructions, not constraint solving, SLOT
may produce more complex constraints on some inputs. However,
such cases are rare and their impact can be combatted by running
SLOT according to portfolio methodology [24].

Our empirical evaluation demonstrates that SLOT can substan-
tially speed up SMT solving, especially for complex constraints
which would otherwise take a long time to solve. Our approach
increases the number of solvable constraints at fixed timeouts by
up to 18% for bitvectors, 14% for floating-point numbers, and 80%
for mixed benchmarks. Moreover, SLOT can solve constraints for



Benjamin Mikek and Qirun Zhang

SMT

LLVM IR LLVM IR’

SMT’

Fro
nte
nd

LLVM opt

Backend

Solver Solver
sat⇐⇒sat

Figure 1: Overview of SLOT’s translation and optimization
process. The output constraint (SMT’) is satisfiable if and
only if the original constraint (SMT) is satisfiable.

which all tested solvers time out. We also observe mean speedups
above 2× for bitvector and floating–point constraints, and as high
as 3× for mixed constraints. By measuring which optimization
passes contribute to the speedup, we find that simple peephole
optimizations, reassociation, and global value numbering are the
most effective at speeding up solving. This result provides insight
into what optimizations are left on the table by existing solvers.

The practical results for translation and optimization with LLVM
also demonstrate something general about the pre-processing ap-
proach: performance gains increase with original solving time be-
cause for very small constraints, the overhead of pre-processing
may exceed the cost of simply running a solver. For example, one
benchmark using SLOT and Z3 is sped up from 0.06 seconds to 0.02
seconds, but SLOT takes 0.24 seconds to translate and optimize it,
a substantial proportional, if not absolute, slowdown. The perfor-
mance decrease for small and simple constraints is offset by large
performance gains for complex constraints.
Unbounded Theories
The pre-processing strategy, however, is not only limited to trans-
lation and optimization with LLVM; we also consider how to trans-
form constraints from unbounded theories into bounded ones. This
type of transformation is of interest because, although SMT solvers
handle unbounded values in the theories of integer and real arith-
metic, they are implemented in traditional programming languages,
where all datatypes are bounded. The gap between the require-
ments of the theory and the practical reality of implementation
makes solving unbounded constraints challenging and expensive.

Unlike the theories of bitvectors and floating-point numbers,
the search space for unbounded theories is infinite on its face. For
constraints on real numbers, satisfiability is at least decidable, but
no theoretical bounds exist [23]. For integer constraints, the picture
is no better. Linear integer constraints (without multiplication or
division of variables) are decidable and satisfying assignments of
variables for these constraints are bounded [18]. Unfortunately, the
bounds on solutions are exponential in the number of assertions
(inequalities), meaning that they become impractically large even
for relatively small numbers of assertions. Useful SMT problem
instances can run to thousands of inequalities. For nonlinear integer
arithmetic, not only are solutions unbounded, but the question of
satisfiability is undecidable [10]. Both the theoretical complexity of
the problem and the engineering issues faced by solver developers
make it difficult to improve performance for unbounded theories.

We propose a theory arbitrage to overcome the challenges of
solving constraints in unbounded theories. Our key insight is that
unbounded real numbers and integers each have a bounded coun-
terpart SMT theory: floating-point numbers and bitvectors. Our

strategy is to use constraints in the bounded theories to solve un-
bounded constraints. We begin with an original constraint 𝑆 in
an unbounded theory, and convert to constraint 𝑆 ′ with the same
semantics, but in a bounded theory. The benefit of our approach is
that it speeds up solving by taking advantage of solvers’ superior
performance on bounded theories. In our experiments for example,
we find that Z3 can take up to 5× longer to solve a nonlinear integer
constraint than a similar bitvector one.

The main challenge in effecting this transformation is to achieve
the translation without changing the semantics of the underlying
constraint. In particular, bounded SMT sorts inherently cannot
represent all values in an unbounded theory, either because they
are too large (integers and real numbers), or because they are too
precise (real numbers). We address this challenge by first analyzing
the problem to reason about which bounds are likely to be correct
and, second, introducing an underapproximation that guarantees
correctness in a subset of cases. These two fundamental steps give
rise to a framework for converting unbounded SMT constraints
into bounded ones, which is adaptable and efficient.

In our framework, we achieve the first step by introducing a
novel and general abstract interpretation strategy to infer bounds
on the original SMT problem, giving us the tools to convert 𝑆 into
𝑆 ′. This strategy is adaptable to the different notions of bounded-
ness in integer and real number problems. However, the theoretical
properties of the problem mean that the inferred bounds are not
always sufficient. Thus, in the second step, we introduce underap-
proximation. If the new constraint 𝑆 ′ is unsatisfiable, we revert to
the original constraint, providing no performance improvement
and guaranteeing the correct satisfiability result. If 𝑆 ′ is satisfiable,
we verify that its satisfying assignment also satisfies 𝑆 before return-
ing a result; in the typical case, this process is faster than directly
solving 𝑆 . In aggregate, this underapproximation strategy guar-
antees correctness while allowing users to benefit from increased
performance for many constraints.

Our preliminary experimental results for transformation from
unbounded theories to bounded ones are encouraging. For some
constraints the transformation achieves huge speedups, converting
constraints that take hundreds of seconds in unbounded form to a
new form which takes under one second to solve. However, other
constraints become harder for solvers to deal with. Our empirical
results suggest that the speedup is the greatest for nonlinear integer
constraints, with only very small changes for linear real constraints.
Conclusion
In summary, we have presented a general framework for speeding
up SMT solving: instead of improving solver internals, we aim
to transform and simplify constraints. We have instantiated this
strategy in two ways and find encouraging concrete results. Our
main contributions are the following:

• We propose a fresh perspective on speeding up SMT solving
by transforming constraints rather than adding to solvers.

• We develop a constraint translation strategy which uses
compiler optimizations to speed up SMT solving, achieving
substantial speedups in practice.

• We create an under-approximative transformation from
unbounded SMT theories to bounded ones, achieving large
speedups for nonlinear integer constraints.



Faster SMT Solving via Constraint Transformation

References
[1] Mislav Balunovic, Pavol Bielik, and Martin T. Vechev. 2018. Learning to Solve

SMT Formulas. In Advances in Neural Information Processing Systems 31: Annual
Conference on Neural Information Processing Systems (NeurIPS). 10338–10349.

[2] Haniel Barbosa, Clark W. Barrett, Martin Brain, Gereon Kremer, Hanna Lachnitt,
Makai Mann, AbdalrhmanMohamed, Mudathir Mohamed, Aina Niemetz, Andres
Nötzli, Alex Ozdemir, Mathias Preiner, Andrew Reynolds, Ying Sheng, Cesare
Tinelli, and Yoni Zohar. 2022. cvc5: A Versatile and Industrial-Strength SMT
Solver. In Tools and Algorithms for the Construction and Analysfis of Systems -
28th International Conference, TACAS. 415–442.

[3] Clark Barrett, Pascal Fontaine, and Cesare Tinelli. 2017. The SMT-LIB Standard:
Version 2.6. Technical Report. Department of Computer Science, The University
of Iowa. Available at www.SMT-LIB.org.

[4] Murphy Berzish, Mitja Kulczynski, Federico Mora, Florin Manea, Joel D. Day,
Dirk Nowotka, and Vijay Ganesh. 2021. An SMT Solver for Regular Expressions
and Linear Arithmetic over String Length. In Computer Aided Verification - 33rd
International Conference, CAV. 289–312.

[5] Dirk Beyer, Matthias Dangl, and Philipp Wendler. 2018. A Unifying View on
SMT-Based Software Verification. J. Autom. Reason. 60, 3 (2018), 299–335.

[6] Nikolaj Bjørner, Clemens Eisenhofer, and Laura Kovács. 2023. Satisfiability
Modulo Custom Theories in Z3. In Verification, Model Checking, and Abstract
Interpretation, VMCAI. 91–105.

[7] Tim Blazytko, Moritz Contag, Cornelius Aschermann, and Thorsten Holz. 2017.
Syntia: Synthesizing the Semantics of Obfuscated Code. In 26th USENIX Security
Symposium, USENIX Security. 643–659.

[8] Cristian Cadar, Daniel Dunbar, andDawson R. Engler. 2008. KLEE: Unassisted and
Automatic Generation of High-Coverage Tests for Complex Systems Programs.
In 8th USENIX Symposium on Operating Systems Design and Implementation,
OSDI. 209–224.

[9] Alessandro Cimatti, Sergio Mover, and Stefano Tonetta. 2012. A quantifier-free
SMT encoding of non-linear hybrid automata. In Formal Methods in Computer-
Aided Design, FMCAD 2012. IEEE, 187–195.

[10] Martin Davis, Yuri Matijasevič, and Julia Robinson. 1976. Hilbert’s tenth problem.
Diophantine equations: positive aspects of a negative solution. American Math.
Soc Providence 1 (1976).

[11] Leonardo Mendonça de Moura and Nikolaj S. Bjørner. 2008. Z3: An Efficient
SMT Solver. In Tools and Algorithms for the Construction and Analysis of Systems,
14th International Conference, TACAS. 337–340.

[12] Susmit Jha, Sumit Gulwani, Sanjit A. Seshia, and Ashish Tiwari. 2010. Oracle-
guided component-based program synthesis. In Proceedings of the 32nd ACM/IEEE

International Conference on Software Engineering, ICSE 2010. ACM, 215–224.
[13] Juneyoung Lee, Dongjoo Kim, Chung-Kil Hur, and Nuno P. Lopes. 2021. An

SMT Encoding of LLVM’s Memory Model for Bounded Translation Validation.
In Computer Aided Verification - 33rd International Conference, CAV. 752–776.

[14] Daniel Liew, Daniel Schemmel, Cristian Cadar, Alastair F. Donaldson, Rafael
Zähl, and Klaus Wehrle. 2017. Floating-point symbolic execution: a case study
in n-version programming. In Proceedings of the 32nd IEEE/ACM International
Conference on Automated Software Engineering, ASE. 601–612.

[15] Nuno P. Lopes, Juneyoung Lee, Chung-Kil Hur, Zhengyang Liu, and John Regehr.
2021. Alive2: bounded translation validation for LLVM. In PLDI ’21: 42nd ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation. 65–79.

[16] Benjamin Mikek and Qirun Zhang. 2023. Speeding up SMT Solving via Compiler
Optimization. In Proceedings of the 30th ACM Joint European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, ESEC/FSE
2023 (to appear).

[17] V. Manquinho J. Monteiro N. P. Lopes, L. Aksoy. 2010. Optimally Solving the
MCM Problem Using Pseudo-Boolean Satisfiability. Technical Report RT/43/2010.
INESC-ID.

[18] Christos H. Papadimitriou. 1981. On the Complexity of Integer Programming. J.
ACM 28, 4 (oct 1981), 765–768.

[19] Mathias Preiner, Aina Niemetz, and Armin Biere. 2017. Counterexample-Guided
Model Synthesis. In Tools and Algorithms for the Construction and Analysis of
Systems - 23rd International Conference, TACAS. 264–280.

[20] Andrew Reynolds, Haniel Barbosa, Cesare Tinelli, Aina Niemetz, Andres Noet-
zli, Mathias Preiner, and Clark Barrett. 2018. Rewrites for SMT Solvers Using
Syntax-Guided Enumeration. http://homepage.divms.uiowa.edu/~ajreynol/pres-
smt2018.pdf

[21] Andrew Reynolds, Morgan Deters, Viktor Kuncak, Cesare Tinelli, and Clark W.
Barrett. 2015. Counterexample-Guided Quantifier Instantiation for Synthesis in
SMT. In Computer Aided Verification - 27th International Conference, CAV 2015.
198–216.

[22] Da Shen and Yuliya Lierler. 2018. SMT-Based Constraint Answer Set Solver
EZSMT+ for Non-Tight Programs. In Principles of Knowledge Representation and
Reasoning: Proceedings of the Sixteenth International Conference, KR 2018. 67–71.

[23] Alfred Tarski. 1998. A DecisionMethod for Elementary Algebra and Geometry. In
Quantifier Elimination and Cylindrical Algebraic Decomposition. Springer Vienna,
24–84.

[24] Christoph M. Wintersteiger, Youssef Hamadi, and Leonardo Mendonça de Moura.
2009. A Concurrent Portfolio Approach to SMT Solving. In Computer Aided
Verification, 21st International Conference, CAV. 715–720.

http://homepage.divms.uiowa.edu/~ajreynol/pres-smt2018.pdf
http://homepage.divms.uiowa.edu/~ajreynol/pres-smt2018.pdf

	References

