
Moving Beyond Parsing Expression Grammars
Kalya Sanderson, Jamie Jennings

kgsande2@ncsu.edu, jjennings@ncsu.edu

1 Introduction
Regular Expressions (regexes) are a powerful tool, commonly used [1, 4] for text search and input

validation (ensuring the entire input matches). Input validation is a key use case because it regularly
appears near the top of annual rankings of software vulnerabilities. But regexes have many drawbacks.
They are under-tested [3], hard to write and maintain [1, 5], and are not composable (unlike the regular
languages that inspired them). Even worse, they lack portability [4] across programming languages.

Applying techniques from the design and implementation of programming languages can yield a
pattern-based search/match technology that avoids the regex pitfalls. We propose a regex replacement
which is designed like a modern programming language to be better suited to software development “in
the large”: the Rosie Pattern Language (RPL) (https://rosie-lang.org). RPL is a Domain-Specific Language
(DSL) for pattern-based matching and searching that is loosely based on Parsing Expression Grammars
(PEG) [2]. RPL has a concrete syntax, composable patterns, lexical scopes, shareable pattern packages,
and Unicode support1. A built-in unit test framework helps document patterns and catch regressions, both
vital features when patterns are developed by many people over the lifetime of a software project.

Rosie 1.x has been in use outside of IBM (where the project began) since 2018. In the Rosie 2.0
project, we are addressing lessons learned about language design; we are also re-architecting the
implementation to look more like a traditional compiler. Our compiler transforms patterns into bytecode
for a pattern matching virtual machine like that of [6]. The new architecture enables adoption of classic
compiler optimizations to our DSL, including tail recursion elimination, function inlining, and loop
unrolling.

Importantly, as we develop Rosie 2.0, we are experimenting with new language features. In this
paper, we present two operators that are not part of the PEG specification: a back reference feature that
operates on (partial) parse trees at runtime, and a match predicate feature that conditions the success of a
match on a recursive application of the matching algorithm to text matched by a prior non-terminal.

2 Back-references
Back-references appeared in 1979 when Al Aho added captures to Unix regex. A capture is the

span of input matched by a designated sub-expression of the regex. The sub-expression, marked by
enclosing it in parentheses, is called a capture group. In regex implementations, captures form a flat list.
If, due to repetition in a regex, a capture group matches more than once, the new match overwrites the old
one. While perhaps disadvantageous to the regex user, this semantics is friendly to the implementer of the
regex matcher, who may pre-allocate an array to hold captures before matching begins. The number of
captures is fixed syntactically by the regex itself. Building a capture list is a side-effect of regex
matching.

The reference part of a back reference is merely an index into the list of captures.
Back-references in regex are often denoted syntactically as, e.g. \2, which causes the regex engine to
match the contents of the second capture. Information about captures, back references, and other regex

1 Our current Unicode supports both full and simple case folding, and the ability to match characters that have any
standard Unicode property, e.g. Greek script, or whitespace, or upper-case. In Rosie 1.4, the only supported
encoding is UTF-8, though Rosie 2.0 is designed to handle the other encodings as well.

1

mailto:kgsande2@ncsu.edu
mailto:jjennings@ncsu.edu
https://rosie-lang.org


features is plentiful online; we caution readers to be aware that the semantics of many regex features can
vary from one implementation to the next [4].

In a grammar-based system like Rosie, a parse tree node is the analog for a regex capture, storing
the input span that matched a sub-expression – specifically, a non-terminal in the grammar. We created an
experimental back-reference feature in Rosie 1.2, which we are now refining. Since parse tree nodes are
named for non-terminals, a back-reference in RPL looks like backref:P, where P names the target
non-terminal of the back-reference operator. The RPL definitions in Figure 1, below, can be used to
match a simplified form (for ease of exposition) of HTML, with nested tag pairs2. Note that the slash “/”
denotes possessive ordered choice in Parsing Expression Grammars.

tagname = [:alpha:]+ // one or more letters
starttag = { "<" tagname ">" } // <tagname>
endtag = { "</" backref:tagname ">" } // </tagname>
grammar html = { starttag html endtag } / "" end // is denoted "" in RPLϵ

Figure 1: RPL grammar for a simplified version of HTML.

The key question in the back-reference design was how to find the appropriate instance of the
target non-terminal in a parse tree that is (1) under construction, and (2) may contain multiple occurrences
of the target non-terminal, possibly even nested (recursive) ones. When Rosie encounters backref:P,
its VM must first locate a prior capture of non-terminal P. That is, the VM looks through the
partially-completed parse tree for a P node that is complete. In the absence of recursion, the VM simply
finds the most recent complete match for the specified non-terminal. Unlike in regex, where captures
with the same name (or number) overwrite prior ones, a parse tree may contain many instances of the
same non-terminal.

Note that recursion must be handled carefully3. Consider the case in which the VM is currently
building a subtree rooted at P, then it does not know whether P will match at all, let alone the input span it
will match. So the VM must ignore ancestors named P of the parse tree node it is currently building, as
the matching for those non-terminals is incomplete. But there may instances of P nodes elsewhere.

Suppose the parse tree search does find a complete node named P. That node is annotated with
the input span (e.g. start/end positions) that P matched. This span is a sequence of symbols that
backref:P must match (consume) ahead of the current input position. Our PEG back reference feature
thus provides a function analogous to its counterpart in regex languages.

We hope that the brief overview of the back reference feature given here is sufficient to motivate
consideration of other pattern matching features that utilize the parse tree at run-time, while it is under
construction. In the next section, we propose a novel feature that does just this, the match predicate.

3 See https://jamiejennings.com/posts/2023-10-01-dont-look-back-3/ for a more detailed treatment of the algorithm.
2 Any Dyck language would suffice for an example; the tags of HTML form one that is familiar to many.

2

https://jamiejennings.com/posts/2023-10-01-dont-look-back-3/


3 Match predicates

Parsers for programming languages often support “semantic actions” which are executed during
parsing and can be effectful, e.g. building a symbol table or halting parsing because some test fails. Our
DSL is not embedded, and we are not building a parser generator for programming language
implementation. Yet, we have identified a use case for conditioning the success of a match on a separate
predicate, namely to facilitate pattern reuse. Generally, developers prefer to reuse patterns from libraries
over having to modify their definitions (as they do with code), and match predicates facilitate that.

A where predicate is a pattern with three arguments, a pattern X, a path Y, and a pattern Z, such
that X where(Y, Z) means, operationally, “match X, then test that the input span matched by
non-terminal Y is itself matched by Z”. The argument Y is a parse tree path, with implicit root X, that
uniquely identifies a non-terminal within the (completed) parse tree of X. The ability to specify an
arbitrary pattern for Z means that our matcher is invoked recursively in concept, though the
implementation itself does not use the C runtime stack for this.

While deciding the format of Y, the tree path, we chose a variant of JSONPath [7]. Rosie has the
option to output a match (parse tree) as a JSON object and users may decide on a correct path for their
predicate easily by previewing the structure of the JSON objects returned by pattern X.

Another design decision involved how we might apply the where predicate while the parse tree
is still under construction. By applying the predicate immediately after matching X, and requiring Y to be
rooted at X, we can ensure that either the node referred to by Y exists and is unique, or that this particular
parse for X did not contain Y, in which case the where predicate will fail for lack of a referent.

Consider this example: The RPL net library contains patterns for network-related items such as
URLs, email addresses, and ip (v4 and v6) addresses. A where predicate allows users to search for
URLs that meet certain criteria, without altering or duplicating the definition in the net library. Thus a
user might write this pattern to search for URLs where the registered-name part is “catalog.data.gov”:

P = net.url where(authpath/authority/host/registered-name, “catalog.data.gov”)

Figure 2: Example of a match predicate, indicated by the keyword where.

Note that the string “catalog.data.gov” is in fact the syntax for an RPL pattern that matches that
string. The pattern P will match, e.g. “https://catalog.data.gov/dataset/electric-vehicle-population-data”.
While in this example, and in our current implementation, we restrict the pattern Z to literal strings, we
plan to allow for an arbitrary pattern to be matched.

3 Conclusion and Future Work

Our approach to the design and implementation of Rosie and RPL is heavily based on the history
of programming language development. Scheme inspired our choice of lexical scope, our package model,
and hygienic macros that operate on ASTs. Static analysis, ahead-of-time compilation, and an automated
test framework are especially important for large projects developed by many people over a long period
of time, such as open source and commercial software. All are common traits of Turing-complete
language implementations, and often lacking in DSLs where they confer many of the same benefits.

3

http://catalog.data.gov
http://catalog.data.gov
http://catalog.data.gov
https://catalog.data.gov/dataset/electric-vehicle-population-data


Focusing specifically on our matching predicates, we note that the ability to match a particular
span of input twice (or more) suggests a connection to formal language intersection. Regular languages
are closed under intersection, and context-free languages are not. What about Parsing Expression
Grammars, and the classes of grammars that we, like others, have been developing after starting with
PEGs and finding them insufficient? We are keenly interested in having as simple a formal model as
possible for our system, which is meant to facilitate development of reliable, performant software. Our
work continues with implementation; solving problems like input validation and text search; and building
formal models and semantics.

Acknowledgements

We wish to thank Andrew Farkas for his work implementing the re-entrant feature of our VM in 2022, on
which our current implementation effort to implement matching predicates relies.

References

[1] L. G. Michael, J. Donohue, J. C. Davis, D. Lee and F. Servant, "Regexes are Hard: Decision-Making,
Difficulties, and Risks in Programming Regular Expressions," 2019 34th IEEE/ACM International Conference on
Automated Software Engineering (ASE), San Diego, CA, USA, 2019, pp. 415-426,
https://doi.org/10.1109/ASE.2019.00047

[2] Bryan Ford. 2004. Parsing expression grammars: a recognition-based syntactic foundation. In Proceedings of the
31st ACM SIGPLAN-SIGACT symposium on Principles of programming languages (POPL '04). Association for
Computing Machinery, New York, NY, USA, 111–122. https://doi.org/10.1145/964001.964011

[3] Peipei Wang and Kathryn T. Stolee. 2018. How Well Are Regular Expressions Tested in the Wild?. In
Proceedings of the 26th ACM Joint European Software Engineering Conference and Symposium on the Foundations
of Software Engineering (ESEC/FSE ’18), November 4–9, 2018, Lake Buena Vista, FL, USA. ACM, New York,
NY, USA, 11 pages. https://doi.org/10.1145/3236024.3236072

[4] James C. Davis, Louis G. Michael IV, Christy A. Coghlan, Francisco Servant, and Dongyoon Lee. 2019. Why
Aren’t Regular Expressions a Lingua Franca? An Empirical Study on the Re-use and Portability of Regular
Expressions. In Proceedings of the 27th ACM Joint European Software Engineering Conference and Symposium on
the Foundations of Software Engineering (ESEC/FSE ’19), August 26, 2019, Tallinn, Estonia. ACM, New York,
NY, USA, 12 pages. https://doi.org/10.1145/3338906.3338909

[5] Peipei Wang, Chris Brown, Jamie A. Jennings, and Kathryn T. Stolee. 2020.
An Empirical Study on Regular Expression Bugs. In 17th International Conference on Mining Software Repositories
(MSR ’20), October 5–6, 2020, Seoul, South Korea. https://doi.org/10.1145/3379597.3387464

[6] Roberto Ierusalimschy. 2009. A text pattern-matching tool based on parsing expression grammars. Software:
Practice and Experience 39, 3 (2009), 221–258. https://doi.org/10.1002/spe.892

[7] See, for example: Stefan Goessner. 2007. JSONPath - XPath for JSON. Retrieved August 8, 2023 from:
https://goessner.net/articles/JsonPath/

4


