
Language-Level Support for Co-Creative1

Programming2

Chris Martens3

Computer Science Department, North Carolina State University4

martens@csc.ncsu.edu5

Programming languages research to date has largely been focused on programs as artifacts,6

answering questions about what constitutes meaningful programs, what can we deduce about7

their execution paths, how can we compile them to programs in other languages. In this8

paper we argue for a research program more concerned with the process of constructing9

programs as a human activity, taking a broad view of the purposes this activity can serve10

and the ways that programming language research can and should investigate support for11

it. However, programming as an activity can serve a wide variety of important purposes,12

including:13

To create a program artifact that fulfills a set of design requirements;14

To learn how to program, perhaps for the first time or perhaps in a new language;15

As a tool for thought: to define the scope of a problem formally, explore alternative16

definitions and representations, or simulate hypothetical situations;17

To engage with a creative process by relinquishing aesthetic control to an algorithm;18

As a form of play, indulging one’s curiosity or interest in feedback mechanisms.19

How can programming languages best support these diverse activities? In this talk, we will20

examine this issue through the lens of the interactive digital games and arts community. In21

particular, we focus on this community’s use of generative methods—techniques for automating22

and augmenting certain aspects of the creative process. This field includes generative art,23

which uses directed randomness, search, and production grammars, and other techniques to24

generate drawings, music, 3D models, stories, and other artifacts. It also includes procedural25

content generation (PCG), a term more often used in video game development to refer to26

generating levels, graphical and animation effects, virtual 3D environments, and progression27

structures within a game world.28

Generative methods are often used as part of a creative process: leaving certain design29

decisions up to an algorithm, rule, or random process gives artists a way to expand their30

creative horizons and break free of patterns unknowingly developed by their human-controlled31

creative instincts. This desire for feedback loops between human and digital sources of32

creativity leads to an interest in co-creative workflows in which a designer and a digital tool33

both propose and judge edits to a work-in-progress, such as a possibility space of generated34

content (or the program that generates it) (see Figure 1).35

Figure 1 Architecture for a co-creative system.

© Author: Please provide a copyright holder;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:martens@csc.ncsu.edu
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de


XX:2 Language-Level Support for Co-Creative Programming

Figure 2 A mock-up interface for a type-driven program construction aid.

A number of ideas in generative methods connect well with active research agendas36

in programming languages, such as program synthesis, unifying logic programming and37

functional programming idioms, and dependent type systems. For instance, program synthesis,38

when thought of as a tool for generating programs that fit a given specification (e.g., for a39

function, a collection of input-output examples or logical formula relating inputs to outputs),40

is a very general generative process whose integration into human workflows must contend41

with all the same questions as PCG: how can we reason about the relationship between42

specifications and synthesized solutions? What is the possibility space of solutions for a43

given specification, and if there are many solutions, how is the space navigated, presented44

to the user, or refined? Likewise, programming language research has identified a need for45

reasoning about partial or incomplete programs, as, for example, the vision statement for the46

Hazel project [3] points out. The construct of typed holes allows the programming language47

definition (and type system) to support the program editing process: an editor can guide48

a programmer through the possibility space of expressions that match the type of the hole49

(see Figure 2). With richer type systems, more constraints can be placed on the expression50

possibility space and more guidance offered in the language editing environment, as seen in51

Agda [1]’s typed holes that generate case-branches-with-holes from pattern-matched data.52

Tools like Haskell QuickCheck [2], which generates random test cases for Haskell functions,53

demonstrate the need for generativity for practical purposes.54

In this talk, we will bring together insights in programming languages and generative55

methods to propose a future generation of tools that support the diverse purposes of56

programming. We outline a research program for generative programming, grounded in57

a foundation of deductive grammars that exploits the proofs-as-programs correspondence58

to combines execution-as-reduction (functional programming) with execution-as-deduction59

(logic programming). By uniting ideas in these disparate fields, we hope to have the long-60

term impact of empowering future generations of thinkers and creators with computational61

thinking, in service of creativity, education, play, and personal growth.62

References63

1 Ana Bove, Peter Dybjer, and Ulf Norell. A brief overview of Agda–a functional language with64

dependent types. In International Conference on Theorem Proving in Higher Order Logics,65

pages 73–78. Springer, 2009.66

2 Koen Claessen and John Hughes. Quickcheck: a lightweight tool for random testing of haskell67

programs. Acm sigplan notices, 46(4):53–64, 2011.68

3 Cyrus Omar, Ian Voysey, Michael Hilton, Joshua Sunshine, Claire Le Goues, Jonathan Aldrich,69

and Matthew A Hammer. Toward semantic foundations for program editors. arXiv preprint70

arXiv:1703.08694, 2017.71


