
The Granule Project

Harley Eades III (PI Augusta University) and Dominic Orchard (PI University of Kent)
Augusta University Students: Preston Keel

University of Kent Students: Vilem-Benjamin Liepelt, Ed Brown, Ben Moon

In his talk, Preston [1] introduced the basic theory underlying graded linear logic and its alter-
nate perspectives. His work is part of a larger project called the Granule Project1. The aim of the
project is to develop the theory and practical implementation of graded linear type systems both in
the external and internal forms. Thus far we have a core implementation of the Granule Language
and several subprojects studying advanced extensions of the language underway. In this talk I will
introduce the Granule Language, and summarize the subprojects the Augusta University team is
currently working on.

1 The Granule Language

In this section we give the reader a quick taste of what Granule has to offer by giving several
concrete examples. Each of the examples below are real Granule programs, and the reader is
invited to install and try them out2.

Linearity. Granule is based in linear logic, and by default every variable must be used exactly
once. Thus, the following are both well-typed Granule programs:

id : ∀ {t : Type} . t → t

id x = x

swap : ∀ {t : Type, s : Type} . (t, s) → (s, t)

swap (x,y) = (y,x)

However, the next two programs fail to typecheck, because they either use their input 0 times (left),
or twice (right):

7 drop : ∀ {t : Type} . t → ()

drop x = ()
7 copy : ∀ {t : Type} . t → (t, t)

copy x = (x,x)

In fact, the Granule interpreter gr gives us the following errors, respectively:

Linearity error: 2:1: Linearity error: 2:10:

Linear variable x is never used. Linear variable x is used more than once.

One traditional use case for linear types is in handling files, and Granule provides an interface to
files, which includes the following operations:

openHandle : forall {m : HandleType} . IOMode m -> String -> (Handle m) <IO>

readChar : Handle R -> (Handle R, Char) <IO>

closeHandle : forall {m : HandleType} . Handle m -> () <IO>

Linearity then enforces that file handles cannot be used more than once. For example, in the
program on the left the file handle h is only used one time – it appears as if it is used twice, but
the variable h is being shadowed – however, the program on the right, uses the file handle h1 twice,
and thus, fails to type check:

1The project webpage can be found at https://granule-project.github.io/
2Download and install Granule from here: https://granule-project.github.io/granule.html

1

https://granule-project.github.io/
https://granule-project.github.io/granule.html


twoChars : (Char, Char) <IO>

twoChars = let

h ← openHandle ReadMode "somefile";

(h, c1) ← readChar h;

(h, c2) ← readChar h;

() ← closeHandle h

in pure (c1, c2)

7

bad : Char <IO>

bad = let

h1 ← openHandle ReadMode "somefile";

h2 ← openHandle ReadMode "another";

() ← closeHandle h1;

(h1, c) ← readChar h1
in pure c

Graded Modalities. We generalize linearity to graded modalities. The following are two examples
where the input is allowed to be used any number of times:

drop’ : ∀ {t : Type} . t [] → ()

drop’ [x] = ()

copy’ : ∀ {t : Type} . t [] → (t, t)

copy’ [x] = (x, x)

Thus, in Granule the linear logic bang-modality !t is denoted by t []. However, in Granule we
can make use of full spectrum control over the structural rules:

drop’’ : ∀ {a : Type} . a [0] → ()

drop’’ [x] = ()

copy’’ : ∀ {a : Type} . a [2] → (a, a)

copy’’ [x] = (x, x)

Here the type of drop’’ precisely requires that the input x be used 0 times, and the type of copy’’
requires that the input x be used exactly two times.

This is only a brief introduction to the features of Granule. During the presentation we will also
present some more advanced features like data types, pattern matching, and different types of
resource algebras apart from the natural numbers.

2 Team AU: Work in Progress

In this talk I will present an in-depth summary of the following subprojects:
Separation Logic. This project builds off of Preston’s [1] work on the external/internal views

of graded linear logic. Graded linear logic no matter the view is very quantitative, but hiding within
the mathematical models of graded linear logic is a means of also supporting non-quantitative
substructural logics like the logic of bunched implications. This new formalization of graded linear
logic supports utilizing more than one resource-algebra at the same time, and it can be viewed as
a merging of the external and internal views of graded linear logic.

Dependent Types. A long standing open problem in dependent type theory is how to reconcile
the control of structural rules and dependent types. The combination of those features opens up
a lot of interesting problems, for example how are variables managed in specifications? Graded
systems overcome these problems by allowing precise control over how variables are managed in
both specifications and programs. We will show that naively adding dependent types to linear
logic results in a degenerate system, and then discuss how we over come these problems using the
internal view of graded linear logic.

References

[1] Preston Keel and Harley Eades III. On the internal and external view of graded linear logic.
Presented at the Southeast Regional Programming Languages Seminar (SERPL), 2019.

2


	The Granule Language
	Team AU: Work in Progress

