
On the Internal and External View of Graded Linear Logic

Preston Keel Harley Eades III

1 Introduction

Traditionally, linear logic [4] captures the quantitative aspect of resources by forcing them to be
used exactly once, but then giving a means for the programmer to control when resources can
be duplicated and deleted. This is done by annotating a type, A, with a ! (read bang) as in !A.
However, this traditional view only allows resources to be either used exactly once or any number
of times. Bounded linear logic [5] was introduced to capture the spectrum of uses of resources that
lie between one and any number. This is done by annotating !A with a natural number, !nA, which
means the resource A can be used up to n times. One application of bounded linear logic has been
to design type systems that only permit polynomial-time programs to type check. Bounded linear
logic has since been generalzied to allow the annotation of !A with an arbitrary element – called
the grade – of a semiring, r ∈ R, denoted by !rA [1, 2, 3]. This generalization to Graded Linear
Logic has been used to combine effects with coeffects in static type systems [2].

Throughout the literature graded linear logic appears in two forms. The first form, we call
externally graded linear logic, requires that every variable be annotated with a grade. The typing
judgment has the form x1 : A1 � r1, . . . , xi : Ai � ri ` t : B where each ri ∈ R is a member
of a resource algebra (R, ∗, 1,+, 0,≤), where addition and 0 is used to control duplication and
deletion of resources. We call this form externally graded, because the grading is a property of the
typing judgment, and is not part of the language. However, in the second form, called internally
graded linear logic, the grading is part of the actual language. Typing judgments have the form
x1 : A1, . . . , xi : Ai ` t : B, but the language has a special type form denoted by �rA that allows
one to annotate a type with a grade r ∈ R. This type form turns out to be a comonad that respects
the structure of the resource algebra.

In this talk we show that the external and internal views are two sides of the same coin, that is,
one underlies the other. We do this by moving across the Curry-Howard-Lambek correspondence
into the logical realm. We give a new sequent calculus that is both externally and internally graded
based on Benton’s Linear/Non-linear logic (LNL), where the internal modality is derived from a set
of two new modalities. The new system we call Externally/Internally Graded Linear Logic consists
of two fragments: one with a judgment of the form X1� r1, . . . , Xi� ri ` B defining the externally
graded fragment, and one with a judgment of the form (X1 � r1, . . . , Xi � ri); (A1, . . . , Ai) ` B
defining the mixed externally/internally graded side. Then the two sides are connected via two
operators FrX which takes an element from the externally graded fragment and internalizes it into
the mixed fragment, and GA which takes a linear formula and imports it into the graded fragment.
Then graded modalities �rA can be defined in the system as �rA = FrGA. Thus showing that
the internally graded linear logic is founded on externally graded linear logic.

Currently, graded linear logic – in both its external and internal views – are designed to precisely
control how often a resource is used which in logic amounts to being able to control the structural
rules for weakening (deletion) and contraction (duplication). The structural rule for exchange is
often taken for granted. However, being able to control exchange has applications in software
verification, functional programming, and interactive theorem proving. Thus, we ask the question,
can we utilize the grading to control exchange in a similar way to weakening and contraction? We

1



answer this question in the positive by generalizing our sequent calculus to support the control of
exchange. This new system adds a tag, e : R //R, that allows one to tag grades marking them as
exchangeable. For example, �e(1)A says that A can only be used 1 time, but is exchangeable with
other formulas, where �2A says that A can be used two times, but cannot be exchanged with other
formulas. The rules for this new sequent calculus are as follows (due to space we cannot show all
the rules, but only give an idea of what the system looks like):

X � 1 `C X
id

Φ1,X � 1,Φ2 `C Y

Φ1,X � 1e,Φ2 `C Y
et

Φ1,X � r ,Y � r ,Φ2 `C Z

Φ1, (X BY )� r ,Φ2 `C Z
BL

Φ1 `C X Φ2 `C Y

Φ1,Φ2 `C X BY
BR

Φ2 `C X Φ1,Y � r2,Φ3 `C Z

Φ1, (X � r1 ⇀ Y )� r2, (r1 ∗ r2) ∗ Φ2,Φ3 `C Z
⇀L

Φ2 `C X Φ1,Y � r2,Φ3 `C Z

Φ1, (Y ↼ X � r1)� r2, (r1 ∗ r2) ∗ Φ2,Φ3 `C Z
↼L

Φ,X � r `C Y

Φ `C X � r ⇀ Y
⇀R

X � r ,Φ `C Y

Φ `C Y ↼ X � r
↼R

Φ `L A

Φ `C GA
GR

Φ1,Φ2 `C Y 0 ∈ R

Φ1,X � 0,Φ2 `C Y
Weak

Φ1,X � r1,X � r2,Φ3 `C Y (r1 + r2) ∈ R

Φ1,X � (r1 + r2),Φ3 `C Y
Cont

Φ1,X � r1e,Y � r2,Φ2 `C Z

Φ1,Y � r2,X � r1e,Φ2 `C Z
Ex

A `L A
id

Γ1,X � 1,Γ2 `L A

Γ1,X � 1e,Γ2 `L A
et

Γ1,A,B ,Γ2 `L C

Γ1,AB B ,Γ2 `L C
BL

Γ1 `L A Γ2 `L B

Γ1,Γ2 `L AB B
BR

Γ2 `L A Γ1,B ,Γ3 `L C

Γ1,A ⇀ B ,Γ2,Γ3 `L C
⇀L

Γ2 `L A Γ1,B ,Γ3 `L C

Γ1,Γ2,B ↼ A,Γ3 `L C
↼L

Γ,A `L B

Γ `L A ⇀ B
⇀R

A,Γ `L B

Γ `L B ↼ A
↼R

Γ1,X � r ,Γ2 `L A

Γ1,FrX ,Γ2 `L A
FL

Φ `C X

r ∗ Φ `L FrX
FR

Γ1,A,Γ2 `L B

Γ1,GA� 1,Γ2 `L B
GL

Γ1,Γ2 `L A 0 ∈ R

Γ1,X � 0,Γ2 `L A
Weak

Γ1,X � r1,X � r2,Γ2 `L A (r1 + r2) ∈ R

Γ1,X � (r1 + r2),Γ2 `L A
Cont

The sequent calculus is based in the Lambek Calculus [6], but then consists of an externally/internally
graded linear logic.

A final generalization over existing systems is that we make the structural rules optional, but
allowing for various parts of the resource algebra to be partial, or not defined at all. For example,
in the Cont and Weak rules above, we require (r1 + r2) ∈ R and 0 ∈ R. If the former fails, then
contraction is not allowed, and if the latter fails, then weakening is not allowed, but we are allowed
any mixture of those. This is also true for exchange. Thus, the logic given above is a framework

2



for graded linear logics. We believe studying this framework will allows us to better understand
substructural type systems.

References

[1] Alöıs Brunel, Marco Gaboardi, Damiano Mazza, and Steve Zdancewic. A core quantitative
coeffect calculus. In Zhong Shao, editor, Programming Languages and Systems, pages 351–370,
Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[2] Marco Gaboardi, Shin-ya Katsumata, Dominic Orchard, Flavien Breuvart, and Tarmo Uustalu.
Combining effects and coeffects via grading. In ACM SIGPLAN Notices, volume 51, pages 476–
489. ACM, 2016.

[3] Dan R Ghica and Alex I Smith. Bounded linear types in a resource semiring. In European
Symposium on Programming Languages and Systems, pages 331–350. Springer, 2014.

[4] Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50(1):1 – 101, 1987.

[5] Jean-Yves Girard, Andre Scedrov, and Philip J. Scott. Bounded linear logic: a modular ap-
proach to polynomial-time computability. Theoretical Computer Science, 97(1):1–66, 1992.

[6] Joachim Lambek. The mathematics of sentence structure. The American Mathematical Monthly,
65(3):154–170, 1958.

3


	Introduction

