
Semantic-Aware Synchronization Determinism
and Beyond

Qi Zhao?

North Carolina State University, Raleigh NC 27606, USA
qzhao6@ncsu.edu

1 Background

Multi-threaded programs are often executed non-deterministically. As a result,
threads can interleave in many different ways. This is a major obstacle in writing
correct multi-threaded programs, as a different thread interleaving can lead to
a different output of a program, even with the same input. It also complicates
debugging and testing of multi-threaded programs, as buggy thread interleav-
ing may be difficult to reproduce. Because of this nondeterminism, concurrency
bugs are referred to as “heisenbugs” [3], a pun on the Heisenberg’s uncertainty
principle in quantum physics.

Deterministic multithreading (DMT) systems aim to eliminate this nondeter-
minism in multi-threaded programs. They try to ensure that a program’s output
solely depends on the program’s input, regardless of how the program is coded
or if they originally contain heisenbugs or not. What DMT systems achieve can
be divided into two tasks: (1) synchronization determinism, which means for
any given input, the sequence of synchronizations will remain the same across
executions, and (2) memory-access determinism, which guarantees all shared
memory reads will return the same results across executions. Previous work [4,
5] has shown that memory-access determinism can be implemented on top of
synchronization determinism without extra serialization. As a result, we keep
our focus on reducing the overhead of synchronization determinism.

Although all DMT systems ensure the same schedule for the same input,
some lacks schedule stability. That is, the schedules they enforce could be very
different for different inputs. Concerning that buggy interleaving may be missed
during testing due to this, researches proposed stable DMT systems that map
similar inputs to the same schedule [1, 2, 6]. Among them, Parrot [1] schedule
synchronizations using round-robin policy to achieve good schedule stability.
This strategy works well when workloads and the number of synchronizations is
distributed evenly among multiple threads, but it will incur high overhead oth-
erwise. As a supplement, they also introduced an annotation called soft barriers
to adjust scheduling while round-robin policy incurs high overhead. Developers
can place these annotations before core computation code regions, to make sure
these computations are executed in parallel. However, these annotations only ad-
dress some sources of overhead and are not always easy to insert. Once inserted,
they become part of the code that needs to be maintained.

In short, it’s important for a DMT system to achieve stability and efficiency
without the need of manual annotation.
? Advised by Guoliang Jin



2 Qi Zhao

Table 1. QiThread policies and the type of synchronizations they cover.

Name Type of Sync. Brief summary of the policy

BoostBlocked Order enforcement Prioritize threads just woken up from blocked state

CreateAll Thread creation Schedule consecutive thread creation all at once

CSWhole Mutual exclusion Schedule critical section as a whole

WakeAMAP Order enforcement Wait till we can wake up multiple blocked threads together

BranchedWake Order enforcement Insert dummy synchronization to rebalance branches

2 QiThread

In QiThread, we designed scheduling strategies that deviate from round-robin
policy when certain synchronization sequences are observed to achieve low over-
head without manual annotations. We summarized five synchronization sequence
patterns, listed in Table 1, where applying alternative scheduling can have a good
chance of reducing overhead. For each sequence, QiThread designed policies on
how to schedule each thread regarding the sequence. For BoostBlocked policy,
threads that are just woken up from the blocked state are scheduled first be-
fore other threads. In CreateAll, when a thread call pthread create in a loop,
all of them are scheduled together. When CSWhole is applied, a critical sec-
tion is scheduled together as a whole. For WakeAMAP, the scheduler counts
the number of threads blocked on a particular pthread cond wait variable, or
semaphore, and keeps scheduling the thread that can wake them up, until all
of the blocked threads are awake. Lastly for BranchedWake, if we found that
some threads skip a simple branch that contains a pthread cond signal or a
sem post, we insert a dummy synchronization to those threads to restore the
balance across threads. These policies cover different types of synchronizations.
We have evaluated them on 108 programs from multiple benchmark suite and
real-world applications. The results shown that, when combined together, they
can achieve a similar or sometimes even better performance than Parrot with
manual soft barriers.

3 Future Work

While QiThread relies solely on the synchronization operation patterns to guide
its scheduling, a high-level analysis may be required for programs with more com-
plex synchronization patterns. For future work, we propose an approach that an-
alyzes high-level thread role and understand the data dependency relationship
between threads. For example, some threads in a program may assume a pro-
ducer role, while others act as consumers. Then the deterministic scheduler can
decide which thread should have higher priority in executing the next synchro-
nization. The system includes a tool to identify thread role with LLVM-based
program analysis, and a deterministic synchronization scheduler.



Semantic-Aware Synchronization Determinism and Beyond 3

References

1. Cui, H., Simsa, J., Lin, Y.H., Li, H., Blum, B., Xu, X., Yang, J., Gibson, G.A.,
Bryant, R.E.: PARROT: A Practical Runtime for Deterministic, Stable, and Reli-
able Threads. In: SOSP ’13. pp. 388–405. SOSP ’13, ACM, New York, NY, USA
(2013). https://doi.org/10.1145/2517349.2522735

2. Cui, H., Wu, J., Tsai, C.c., Yang, J.: Stable Deterministic Multithreading Through
Schedule Memoization. In: Proc. 9th USENIX Conf. Oper. Syst. Des. Imple-
ment. pp. 207–221. OSDI’10, USENIX Association, Berkeley, CA, USA (2010),
http://dl.acm.org/citation.cfm?id=1924943.1924958

3. Gray, J.: Why do computers stop and what can be done about it. Symp. Reliab.
Distrib. Softw. database Syst. 3(2), 3–12 (1986). https://doi.org/10.1.1.59.6561

4. Lu, K., Zhou, X., Bergan, T., Wang, X.: Efficient deterministic multithreading with-
out global barriers. In: Proc. 19th ACM SIGPLAN Symp. Princ. Pract. parallel
Program. - PPoPP ’14. pp. 287–300. PPoPP ’14, ACM Press, New York, New York,
USA (2014). https://doi.org/10.1145/2555243.2555252

5. Merrifield, T., Eriksson, J.: CONVERSION : Multi-Version Concur-
rency Control for Main Memory Segments. EuroSys pp. 127–140 (2013).
https://doi.org/10.1145/2465351.2465365

6. Zhao, Q., Qiu, Z., Jin, G.: Semantics-aware scheduling policies for synchro-
nization determinism. In: Proc. 24th Symp. Princ. Pract. Parallel Program. -
PPoPP ’19. pp. 242–256. No. 1, ACM Press, New York, New York, USA (2019).
https://doi.org/10.1145/3293883.3295731


