
On Optimally Combining Static and Dynamic Analyses
For Intensional Program Properties

Ravi Mangal David Devecsery Alessandro Orso

The goal of algorithmic program verification is to automatically prove programs correct
with respect to logical specifications. Program verification techniques can be broadly clas-
sified as either static or dynamic. Informally, static techniques try to establish the proof
of correctness without executing the program. Program errors, if any, are detected prior
to execution. However, there is no guarantee that a proof of correctness will be found,
even when such a proof may actually exist. Dynamic techniques, on the other hand, insert
run-time checks in the program that trigger an exception if the specification is violated
during program execution.1 Though these checks cause run-time overheads, they remove
the burden of proving a program correct prior to execution.

Given the complementary nature of static and dynamic approaches to program verifica-
tion, it is natural to consider a combined approach that first checks the program statically,
and in case the correctness cannot be established, introduces run-time checks in the pro-
gram wherever necessary. A number of such combined or hybrid approaches such as gradual
typing [1,2], hybrid type checking [3], soft contract verification [4] have been proposed in the
literature. Though these approaches differ in their details, the common thread is that they
use static checking wherever possible, and only defer to run-time checks where necessary.
These run-time checks are expressed using dynamic contracts [5, 6].

Though dynamic contracts suffice for enforcing functional correctness properties, many
program properties, such as data-race freedom, deadlock freedom, and information-flow se-
curity, need additional mechanisms for run-time enforcement. In particular, these properties
require defining an instrumented language semantics that tracks extra information about
how computations execute, beyond that which would appear in a standard semantics for the
language. The extra information tracked is property-specific; for instance, data-race free-
dom requires keeping track of a may-happen-before ordering relation for reads and writes in
the program. In general, such program properties that refer to “how computations execute"
are dubbed as intensional properties. Dynamic analyses for checking intensional properties
can have large overheads since, in addition to checking dynamic contracts, the analysis is
also required to maintain and update additional program state. A hybrid approach can help
reduce the run-time overheads, but the design of such hybrid approaches is more involved
in the instrumented semantics setting. It does not suffice to reduce the number of dynamic
contracts in the program. We also need to reduce the additional information tracked by
the semantics. Fortunately, static analysis can help us ensure that only the necessary in-
formation is tracked in addition to ensuring that dynamic contracts are introduced only

1Note that, by “dynamic analysis", we do not mean approaches like testing, fuzzing, dynamic symbolic
execution, or execution trace analysis which have also been referred to as dynamic analyses in the literature.

1



when necessary. A number of bespoke, ad-hoc combination of dynamic and static analyses
for intensional properties already exist [7–10]. Such hybrid analyses, while effective, do not
provide a general recipe or any general guarantees. The analysis designer has to repeat the
hybrid analysis design process for every new pair of analyses.

In this talk, we present a precise formulation of hybrid analyses for intensional program
properties. Moreover, we formally define the notion of an optimally efficient combination of
static and dynamic analyses. For this purpose, we define the notion of parametric static and
dynamic analyses, where the parameter controls the cost and precision of these analyses. We
also propose a general recipe for constructing an optimal hybrid analysis given corresponding
parametric static and dynamic analyses.

A key advantage of our formulation is that many existing static and dynamic analyses for
intensional program properties can be easily expressed as parametric analyses, and combined
to produce optimistic hybrid analyses using our recipe. This allows us to quickly construct
the hybrid version of the analysis from the already existing static and dynamic analyses.
In general, we view our formulation as a new point in the design space of general hybrid
checking techniques.

References

[1] J. G. Siek and W. Taha, “Gradual typing for functional languages,” in In Scheme And
Functional Programming Workshop, 2006.

[2] J. G. Siek, M. M. Vitousek, M. Cimini, and J. T. Boyland, “Refined Criteria for Gradual
Typing,” in 1st Summit on Advances in Programming Languages (SNAPL 2015), 2015.

[3] K. Knowles and C. Flanagan, “Hybrid type checking,” ACM Trans. Program. Lang.
Syst., 2010.

[4] P. C. Nguyen, S. Tobin-Hochstadt, and D. Van Horn, “Soft contract verification,” in
Proceedings of the 19th ACM SIGPLAN International Conference on Functional Pro-
gramming, ICFP ’14, 2014.

[5] B. Meyer, Eiffel: The Language. 1992.

[6] R. B. Findler and M. Felleisen, “Contracts for higher-order functions,” in Proceedings
of the Seventh ACM SIGPLAN International Conference on Functional Programming,
ICFP ’02, 2002.

[7] W. Chang, B. Streiff, and C. Lin, “Efficient and extensible security enforcement using
dynamic data flow analysis,” in Proceedings of the 15th ACM Conference on Computer
and Communications Security, CCS ’08, 2008.

2



[8] J.-D. Choi, K. Lee, A. Loginov, R. O’Callahan, V. Sarkar, and M. Sridharan, “Efficient
and precise datarace detection for multithreaded object-oriented programs,” in Pro-
ceedings of the ACM SIGPLAN 2002 Conference on Programming Language Design
and Implementation, PLDI ’02, 2002.

[9] D. Lee, P. M. Chen, J. Flinn, and S. Narayanasamy, “Chimera: Hybrid program analysis
for determinism,” in Proceedings of the 33rd ACM SIGPLAN Conference on Program-
ming Language Design and Implementation, PLDI ’12, 2012.

[10] D. Devecsery, P. M. Chen, J. Flinn, and S. Narayanasamy, “Optimistic hybrid analysis:
Accelerating dynamic analysis through predicated static analysis,” in Proceedings of
the Twenty-Third International Conference on Architectural Support for Programming
Languages and Operating Systems, ASPLOS ’18, 2018.

3


