Language-Level Support for
Co-Creative Programming

Dr. Chris Martens

Director, Lab

Principles of

Assistant Professor, Computer Science

NC STATE UNIVERSITY

Or, PCG + FP = %/

Motivation: Co-Creative Programming

Propose changes

—-_-—-—‘—'_'-'_'_'_'-'—-—-—-—-_
.__.—' . -,

- p - B s A
Directly edit e
. Analyzed b
1ser > Artifact yzedby| Digital Tool

Programmer) [~ -~~~ > (Program) R e

(Prog Accept & /Analysis Engine)
_ / suggestions _ 4 _ 4

L ST R iy
RN Feedback on proposed changes -7

\§
“
e

-
-
e .
—~— —
e o o e o o o

Propose changes

Procedural Content Generation (PCG)

Generation of art and artifacts through automatic processes

Community: ICCC, PCG Workshop, PROCJAM

Paper & Ink Dungeon Spritify Isometric Map Generator Imaginary Tubes Bass Player

First person dungeon crawler with grid-b... Procedural Generation of layered sprites A tool that procedurally generates isome... A bot that generates tube-styled maps Procedural generation of bass line
darkdes azhain Yellow Hat Games Ciro Durén dOddos

.= o= o=

= = =

“Concerto for Cells and

String”
Island Generation - PROCJAM Concerto for Cells and String Tree Description Generator Absumoria LiSE
2018 Procedural art gallery exhibition Randomly generated descriptions of trees A prototype walkable city generator Rules-based Life Simulator Engine
Island terrain generation submission for ... lowpolis ModernBarbarian Meditator LogicalDash

TheJames12112 Simulation Adventure]

zé z=Ad

Goals for PCG Language Support

e Make it easier for artists and designers to access PCG techniques.

e Abstractions that support reasoning about generative spaces and their
properties

e Provable guarantees about generators: termination, running time, optimality,
well-formedness of results, etc.

e Integration with general purpose programming languages

The Generative Space

http://www.possibilityspace.org/tutorial-generative-possibility-space/

Possibility Space: Generative Space:
Minecraft worlds Minecraft worlds the
we can describe generator can make

\

\, Flat grass world

http://www.possibilityspace.org/tutorial-generative-possibility-space/

This Talk’s Key Idea

Generative spaces as types
support a unified account of grammar-based
PCG, pattern matching, and constraint-based

synthesis.

Outline

Grammar-based PCG
Deductive grammars (grammars as types)

In progress: Sestina language design
Future Work

Grammar-Based PCG

L-systems: biologically-inspired plant generation

F : forward 1 unit

+ . turn left 6 degrees n=>5, =22.5:
- : turn right 6 degrees o =X
[: push the current state of the turtle onto a FILO stack P X—F-[[X]-X]+F[+FX]-X

] : restore the state of the turtle from the stack P,: F—=FF

Tracery (text generation)

Tracery.io

https://beaugunderson.com/tracery-writer

1|4]
2 "origin": [Indigo ducks are almost always courteous.
3 "#color.capitalize# #animal.s# are #often# #mood#.",
4 "#animal.a.capitalize# is #often# #mood#, unless it Purp|e ravens are almost a|ways indignant_
is #color.a# one."
> 1. i A scorpion is always wistful, unless it is a blue one.
6 often": [
7/ "rarely",
8 “never” Green ravens are never courteous.
9 "often", . .
10 "almost always", A coyote is never courteous, unless it is a purple one.
11 "always",
12 "sometimes” A lizard is rarely vexed, unless it is a purple one.
3 1,
- e An owl is always impassioned, unless it is a grey one.
~ ’
16 "green", i . .
17 " " A zebra is never vexed, unless it is a turquoise one.
grey",
18 "indigo",
19 "orange", Turquoise ducks are rarely courteous.
20 "purple",
Zj , “ERCaipRE" An owl is often impassioned, unless it is an orange one.
“ r

https://beaugunderson.com/tracery-writer

Tracery (text generation)

Cheap Bots Done

Quick

a strange voyage @str_voyage - 3h
In an instant, day becomes night. We will not sleep tonight.

O 0 19 Q 3o 8

a strange voyage @str_voyage - 4h
Our rickety boat requires repairs.

(®) 1.3 QO 10 8

a strange voyage @str_voyage - 4h
In an instant, day becomes night. We fasten our belongings to the deck.

(@) s QO 19 (]

a strange voyage @str_voyage - 5h
A vibrant sunset.

O m 10 Q 21]
a strange voyage @str_voyage - 5h

The water.

@) 0 s Q 18 [

a strange voyage @str_voyage - 6h
Obsidian cliffs loom over our raft.

€J 1318 Q 13 [}

Recursive Story Grammar

"origin™: ['"Once upon a time, #story#"|
"story": ["#hero# the #heroJob# #setSailForAdventure#. #openBook#"]

"openBook": ["An old #occupation# told #hero# a story. 'Listen well' she said to
#heroThem#, 'to this #strange# #tale#. ' #origin#","#hero# went home.","#hero#
found an ancient book and opened it. As #heroThey# read, the book told

#strange.a# #tale#: #origin#"]

Environment bindings

"origin": ["Once upon a time, #[#setCharacter#]story#"]
"setCharacter"”: ["[#setPronouns#][hero:#name#][heroJob:#occupation#]"]

"setPronouns™:
["[heroThey:they][heroThem:them][heroTheir:their][heroTheirs:theirs]","[her
oThey:she][heroThem:her][heroTheir:her][heroTheirs:hers]”,"[heroThey:he][
heroThem:him][heroTheir:his][heroTheirs:his]"]

"setSailForAdventure”: ["set sail for adventure”,"left #heroTheir#
home","set out for adventure”,"went to seek #heroTheir# forture"]

Example of a bug

#heroThey# when not defined....
Nondeterministic => only see it sometimes...

Goal: use types to eliminate errors like this

Deductive Grammars

Grammars, formally

G=<N,2, P S>

N nonterminals, e.g. Origin, Color
>, terminals, e.g. “cat”, “hello”, ...
P production rules, e.g.
“Origin -> Color Animal are Often Mood”

S start symbol, e.g. Origin

Grammars, formally

Grammar expressions
o:=¢|Ax|td (for Ain N, t in Sigma)

Stringss ;= €| t|ete

Judgment “s matches (x”

Deductive Grammars

Nonterminals N correspond to named types

Type checking:

A->0 inP e matches (X

e:A

Deductive Parsing

Principles and Implementation of Deductive Parsing
Shieber et al., J. Logic Programming 1995

1. Existing logics can be used as a basis for new grammar formalisms with
desirable representational or computational properties.

2. The modular separation of parsing into a logic of grammaticality claims and
a proof search procedure allows the investigation of a wide range of parsing
algorithms for existing grammar formalisms by selecting specific classes of
grammaticality claims and specific search procedures.

Deductive Grammars

Beyond strings -- derived rules for sums and products
A->el1]|...|en
==>
defprop A = OR {TAG1 : |el| .. TAGn : |en]|}

Expansion alternatives as sums, string concat generalized to products

Deductive Grammars

Beyond strings -- derived rules for sums and products
A->el1]|...|en
==>
defprop A = OR {TAG1 : |el| .. TAGn : |en]|}
Expansion alternatives as sums, string concat generalized to products

Why? So we can pattern match and project on generated data with static safety
& coverage guarantees

Sestina Language Design

Finite Types

Base types: sets of strings, ranges of numbers

Sums, products, and unit

Acknowledgements: Tiannan Chen
and Stephen Guy for the example
(check out their C++ embedded
DSL, GIGL!)

gentype monsterBreed

gentype strongRange

range(5,9) (*

gentype weakRange = range(1,4)
gentype monster = AND {tp : monsterBreed,
dmg : OR {weakRange,strongRange}}

OR {"direwolf", "dragon", "vampire'"}

OR {5, 6, 7, 8, 9} *)

Case Analysis and Projection

letgen m : monster in
case m.tp of
“dragon” => “The dragon breathes fire at you for ”
+ m.dmg + ¢ damage”
| _ => (*...%)

Pronouns example

story : string =

LETGEN
heroName : name,
pronouns : pronouns,
CONCAT

"Our hero ", heroName, " went into the dungeon to find treasure.",
pronouns.they, " descended into the final cave, drew ",
pronouns.their, " sword, and fought the beast who faced ",

pronouns.them, "."

Pronouns example: subtyping/singleton types?

gentype pronoun_set = AND {they: string, them: string, their: string}

they_pronouns <: pronoun_set = AND {they: "they", them: "them", their: "their"}
she_pronouns <: pronoun_set = AND {they: "she", them: "her", their: "her"}
he_pronouns <: pronoun_set = AND {they: "he", them: "him", their: "his"}

pronouns <: pronoun_set = OR {they_pronouns, she_pronouns, he_pronouns}

Shuffling as a stream

(* Primitive for shuffling: turn any gentype into a random
stream
shuffle : t:gentype => (unit -> t option) x)

val draw = shuffle card

(* Turn a finite type 1into a list x)
fun addAll () =
case draw() of
SOME c => c::(addAll ())
| NONE => []

Implementation and status

Embedded DSL in Standard ML

https://github.com/chrisamaphone/sestina

Tiny 68-line interpreter (no external syntax yet)

Sums, products, string/range base types, projection,
case analysis/pattern matching through SML

Design goals: syntax, recursive types, type signatures,
optional labels, base type operations, more base types

https://github.com/chrisamaphone/sestina

Future Work

Probabilities and distributions

(GIGL Syntax)

generate DungeonMonster with <* DungeonMonster:
Monster := weak @ {0.6} | strong @ {0.4},
Weapon := club @ {0.7} | flail @ {0.3} *>;

How likely is a weak monster with a club?

What is the expected value of the monster’s attack damage?

Constructive vs. Subtractive Methods

Grammars: pros: easy to author. Cons: hard to
control/refine to only produce the things you want.

A common approach:

e Use a grammar to define a possibility space

e Use a search-based method to search through that
space for exemplars which meet certain
constraints or optimize certain criteria (genetic
algorithms, constraint programming, etc.)

Constructive vs. Subtractive Methods

Constraints

Grammar

Possibility Space

Acknowledgements: Tiannan Chen

Dependent Range Types and Stephen Guy for the example

(check out their C++ embedded
DSL, GIGL!)
Use case for dependent types

gentype range(min,max) = Sigma n:nat. <geq n min, leq n max>
gentype weakRange = range(1,4)

val rageDmg : range(8,11) = letgen d:weakRange in d+7

(* Expanded: x)

Letgen {n=dmg, minproof : geq dmg 1, maxproof : leq dmg 4} : weakRange
in {d+7, geq_succ?7 minproof, leq_succ”7 maxproof}

Mixed-initiative program construction

Generation at coding time vs. at running time

datatype ‘a tree = (

Leaf of ‘a
| Node of ‘a tree * ‘a tree

2
Leaf {? : 1int}
N J

(Node ({? : 1int tree}:

{? : int tree}
N 2
.

4

val test_tree = { ? : 1int tre

=
Generate
&

Running partial programs

{ Kate Compton @GalaxyKate - 15 Dec 2018 v

v =4 Yeah, | have a whole dissertation chapter on Casual Creator programming
languages, and 80% of it is graceful handling of errors. Either allowing partial
specification (ie Tracery's [symbol] notation) or stubbing in defaults or just
shrugging and compiling as best you can.

O 2 11 © 15 = éy Kate Compton v
@GalaxyKate

Replying to @GalaxyKate @chrisamaphone and 3 others

We'd have a much smaller internet if 90s web
pages failed to load if you didn't close a <p>
tag.

12:54 PM - 15 Dec 2018

3 Retweets 20 Likes ‘G@G@@ <& . s

Some other things that are cool and exist

e Agda, Hazel (typed holes and partial program synthesis)
e Type-driven Program Synthesis - Osera, Polikarpova
e PCG Languages: GIGL, Tracery, Marahel

This Talk’s Key Idea

Generative spaces as types
support a unified account of grammar-based
PCG, pattern matching, and constraint-based

synthesis.

Long-term mission

Enable programming as a co-creative activity
through language, editor, and tool design

Thanks! p O E M

Chris Martens Principles of
@chrisamaphone on Twitter Expressive Machines
contextadventure@gmail.com
http://go.ncsu.edu/martens

Sestina: https://qithub.com/chrisamaphone/sestina

mailto:contextadventure@gmail.com
http://go.ncsu.edu/martens
https://github.com/chrisamaphone/sestina

Extra Slides

Functional programming and PCG

Instead of an effectful, nondeterministic unit -> A

params -> T A
...where T A is the possibility space
E.g.: probability distribution

Sampling is an effectful (random) operation

I'-M:0A T'hx: A+ FE -+ B

I' - sample z from M in £+ B

Bind

A Probabilistic Language based upon
Sampling Functions

Sungwoo Park Frank Pfenning

Computer Science and Engineering Department Computer Science Department
Pohang University of Science and Technology Carnegie Mellon University
gla@postech.ac.kr fpQ@cs.cmu.edu

Sebastian Thrun
Computer Science Department
Stanford University
thrun@stanford.edu

