
Language-Level Support for
Co-Creative Programming

Dr. Chris Martens

Director, Lab

Assistant Professor, Computer Science

Or, PCG + FP = <3

Motivation: Co-Creative Programming

Procedural Content Generation (PCG)

Generation of art and artifacts through automatic processes

Community: ICCC, PCG Workshop, PROCJAM

Goals for PCG Language Support
● Make it easier for artists and designers to access PCG techniques.
● Abstractions that support reasoning about generative spaces and their

properties
● Provable guarantees about generators: termination, running time, optimality,

well-formedness of results, etc.
● Integration with general purpose programming languages

The Generative Space
http://www.possibilityspace.org/tutorial-generative-possibility-space/

http://www.possibilityspace.org/tutorial-generative-possibility-space/

This Talk’s Key Idea

Generative spaces as types
support a unified account of grammar-based
PCG, pattern matching, and constraint-based

synthesis.

Outline

● Grammar-based PCG
● Deductive grammars (grammars as types)
● In progress: Sestina language design
● Future Work

Grammar-Based PCG

L-systems: biologically-inspired plant generation

Tracery (text generation)
Tracery.io
https://beaugunderson.com/tracery-writer

https://beaugunderson.com/tracery-writer

Tracery (text generation)
Cheap Bots Done Quick

Recursive Story Grammar
"origin": ["Once upon a time, #story#"]

"story": ["#hero# the #heroJob# #setSailForAdventure#. #openBook#"]

"openBook": ["An old #occupation# told #hero# a story. 'Listen well' she said to
#heroThem#, 'to this #strange# #tale#. ' #origin#'","#hero# went home.","#hero#
found an ancient book and opened it. As #heroThey# read, the book told
#strange.a# #tale#: #origin#"]

Environment bindings
"origin": ["Once upon a time, #[#setCharacter#]story#"]

"setCharacter": ["[#setPronouns#][hero:#name#][heroJob:#occupation#]"]

"setPronouns":
["[heroThey:they][heroThem:them][heroTheir:their][heroTheirs:theirs]","[her
oThey:she][heroThem:her][heroTheir:her][heroTheirs:hers]","[heroThey:he][
heroThem:him][heroTheir:his][heroTheirs:his]"]

"setSailForAdventure": ["set sail for adventure","left #heroTheir#
home","set out for adventure","went to seek #heroTheir# forture"]

Example of a bug
#heroThey# when not defined….

Nondeterministic => only see it sometimes…

Goal: use types to eliminate errors like this

Deductive Grammars

Grammars, formally

G = <N, , P, S>

N nonterminals, e.g. Origin, Color
 terminals, e.g. “cat”, “hello”, …
P production rules, e.g.

“Origin -> Color Animal are Often Mood”
S start symbol, e.g. Origin

Grammars, formally

Grammar expressions
 ::= | A | t (for A in N, t in Sigma)

Strings s ::= | t | e^e

Judgment “s matches ”

Deductive Grammars
Nonterminals N correspond to named types

Type checking:

A -> in P e matches
e : A

Deductive Parsing
Principles and Implementation of Deductive Parsing
Shieber et al., J. Logic Programming 1995

Deductive Grammars
Beyond strings -- derived rules for sums and products

A -> e1 | … | en

==>

defprop A = OR {TAG1 : |e1| … TAGn : |en|}

Expansion alternatives as sums, string concat generalized to products

Deductive Grammars
Beyond strings -- derived rules for sums and products

A -> e1 | … | en

==>

defprop A = OR {TAG1 : |e1| … TAGn : |en|}

Expansion alternatives as sums, string concat generalized to products

Why? So we can pattern match and project on generated data with static safety
& coverage guarantees

Sestina Language Design

Finite Types

gentype monsterBreed = OR {"direwolf", "dragon", "vampire"}

gentype strongRange = range(5,9) (* = OR {5, 6, 7, 8, 9} *)

gentype weakRange = range(1,4)

gentype monster = AND {tp : monsterBreed,
 dmg : OR {weakRange,strongRange}}

Acknowledgements: Tiannan Chen
and Stephen Guy for the example
(check out their C++ embedded
DSL, GIGL!)

Base types: sets of strings, ranges of numbers

Sums, products, and unit

Case Analysis and Projection

letgen m : monster in
case m.tp of

“dragon” => “The dragon breathes fire at you for ”
+ m.dmg + “ damage”

| _ => (*...*)

Pronouns example
story : string =
 LETGEN
 heroName : name,
 pronouns : pronouns,
 CONCAT
 "Our hero ", heroName, " went into the dungeon to find treasure.",
 pronouns.they, " descended into the final cave, drew ",
 pronouns.their, " sword, and fought the beast who faced ",
 pronouns.them, "."

Pronouns example: subtyping/singleton types?
gentype pronoun_set = AND {they: string, them: string, their: string}

they_pronouns <: pronoun_set = AND {they: "they", them: "them", their: "their"}
she_pronouns <: pronoun_set = AND {they: "she", them: "her", their: "her"}
he_pronouns <: pronoun_set = AND {they: "he", them: "him", their: "his"}

pronouns <: pronoun_set = OR {they_pronouns, she_pronouns, he_pronouns}

Shuffling as a stream
(* Primitive for shuffling: turn any gentype into a random
stream
 shuffle : t:gentype => (unit -> t option) *)

val draw = shuffle card

(* Turn a finite type into a list *)
fun addAll () =
 case draw() of
 SOME c => c::(addAll ())
 | NONE => []

Implementation and status

Embedded DSL in Standard ML

https://github.com/chrisamaphone/sestina

Tiny 68-line interpreter (no external syntax yet)

Sums, products, string/range base types, projection,
case analysis/pattern matching through SML

Design goals: syntax, recursive types, type signatures,
optional labels, base type operations, more base types

https://github.com/chrisamaphone/sestina

Future Work

Probabilities and distributions
(GIGL Syntax)

generate DungeonMonster with <* DungeonMonster:
Monster := weak @ {0.6} | strong @ {0.4},
Weapon := club @ {0.7} | flail @ {0.3} *>;

How likely is a weak monster with a club?

What is the expected value of the monster’s attack damage?

Constructive vs. Subtractive Methods

Grammars: pros: easy to author. Cons: hard to
control/refine to only produce the things you want.

A common approach:

● Use a grammar to define a possibility space
● Use a search-based method to search through that

space for exemplars which meet certain
constraints or optimize certain criteria (genetic
algorithms, constraint programming, etc.)

Constructive vs. Subtractive Methods

Possibility Space

Grammar

Constraints

Dependent Range Types
Use case for dependent types

gentype range(min,max) = Sigma n:nat. <geq n min, leq n max>

gentype weakRange = range(1,4)

val rageDmg : range(8,11) = letgen d:weakRange in d+7

(* Expanded: *)

Letgen {n=dmg, minproof : geq dmg 1, maxproof : leq dmg 4} : weakRange
in {d+7, geq_succ^7 minproof, leq_succ^7 maxproof}

Acknowledgements: Tiannan Chen
and Stephen Guy for the example
(check out their C++ embedded
DSL, GIGL!)

Mixed-initiative program construction
Generation at coding time vs. at running time

Running partial programs

Some other things that are cool and exist
● Agda, Hazel (typed holes and partial program synthesis)
● Type-driven Program Synthesis - Osera, Polikarpova
● PCG Languages: GIGL, Tracery, Marahel

This Talk’s Key Idea

Generative spaces as types
support a unified account of grammar-based
PCG, pattern matching, and constraint-based

synthesis.

Long-term mission

Enable programming as a co-creative activity
through language, editor, and tool design

Thanks!
Chris Martens

@chrisamaphone on Twitter
contextadventure@gmail.com

http://go.ncsu.edu/martens

Sestina: https://github.com/chrisamaphone/sestina

mailto:contextadventure@gmail.com
http://go.ncsu.edu/martens
https://github.com/chrisamaphone/sestina

Extra Slides

Functional programming and PCG
Instead of an effectful, nondeterministic unit -> A

params -> T A

...where T A is the possibility space

E.g.: probability distribution

Sampling is an effectful (random) operation

