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DESIGNING MUTABLE OBJECTS
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NATIVE JAVA OPTIONS



MOTIVATION



MOTIVATION

Propose a universal method to guarantee 

non-shared state with predictable semantics.



PREVIOUS WORK



BASIC IDEA

• Formal parameter modifier: __snap__

• Runtime guarantees non-shared state

• Type independent

• Predictable depth of copy



JAVA LANGUAGE SPECIFICATION PROPOSAL

• § 3.9 – Keyword list: add __snap__

• § 8.4.1 – Formal parameter grammar



EXPERIMENT #1: TRANSFORMATION

• A transformation approach accepts code in an enriched syntax or Domain-Specific 

Language (DSL) and transforms the input to another, usually standard, language.



QUICKLY RAN INTO PROBLEMS

• Not universal

• Not mandatory for objects to be:

Cloneable, Serializable, or … Copy-Constructer-able

• Not predictable

• Serialization and Clone() yield different results depending on type.

• CloneNotSupported and NotSerializable exceptions.



EXPERIMENT #2: MODIFY OPENJDK DIRECTLY

Basic Idea:

Implement __snap__ modifier and snapshotting directly in OpenJDK



EXPERIMENT #2: MODIFY OPENJDK

Steps for Experiment:

1. Specify a new bytecode, 0xcb asnap

→Triggers object snapshotting within the Java Virtual Machine

2. Modify the Java compiler (parse and generate phases)

→ Emit 0xcb when loading actual parameters declared w/modifier __snap__

3. Modify the HotSpot JVM’s bytecode interpreter

→ Snapshot object on operand stack when encountering 0xcb bytecode



WHAT IS THE RELATIVE PERFORMANCE?

• In this evaluation:

• Focused on steady-state performance

• Disabled JIT compilation (adapting c1 and c2 compilers are future work)

• Garbage collected before each measured operation

• Evaluation is x64-only due to native x64 assembly code

• Large & Small inputs evaluated.







PREVIOUS WORK SUMMARY

At the end:

1. Had a working prototype based on OpenJDK 10

→ Implemented __snap__ and 0xcb in javac and HotSpot JVM

2. That was performant

→ Relative to extant methods

3. And provided consistent semantics for all objects



CURRENT 
WORK



CURRENT RESEARCH QUESTIONS



PLAN OF CURRENT WORK
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FUTURE 
WORK



PLENTY OF WORK FOR THE FUTURE
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