
ESCAPING THE CLONE ZONE:
JAVA RUNTIME-MANAGED 

SNAPSHOTS

MATTHEW C. DAVIS

EAST CAROLINA UNIVERSITY

SERPL 2019 – AUGUSTA, GA

MAY 11, 2019



ORGANIZATION OF THIS PRESENTATION

• Background

• Motivation

• Previous work

• Current Work

• Future Work

Photos by Unknown Author licensed under CC BY-NC except where noted otherwise

http://timdunn.deviantart.com/art/guy-fawkes-vector-recreated-378098962
https://creativecommons.org/licenses/by-nc/3.0/


BACKGROUND



IMMUTABLE OBJECTS

String

“SER”

String

“PL19”

String

“SERPL19”



DESIGNING MUTABLE OBJECTS



Worklist Worklist

USING SHARED MUTABLE OBJECTS

Worklist

server client

Worklist



NATIVE JAVA OPTIONS



MOTIVATION



MOTIVATION

Propose a universal method to guarantee 

non-shared state with predictable semantics.



PREVIOUS WORK



BASIC IDEA

• Formal parameter modifier: __snap__

• Runtime guarantees non-shared state

• Type independent

• Predictable depth of copy



JAVA LANGUAGE SPECIFICATION PROPOSAL

• § 3.9 – Keyword list: add __snap__

• § 8.4.1 – Formal parameter grammar



EXPERIMENT #1: TRANSFORMATION

• A transformation approach accepts code in an enriched syntax or Domain-Specific 

Language (DSL) and transforms the input to another, usually standard, language.



QUICKLY RAN INTO PROBLEMS

• Not universal

• Not mandatory for objects to be:

Cloneable, Serializable, or … Copy-Constructer-able

• Not predictable

• Serialization and Clone() yield different results depending on type.

• CloneNotSupported and NotSerializable exceptions.



EXPERIMENT #2: MODIFY OPENJDK DIRECTLY

Basic Idea:

Implement __snap__ modifier and snapshotting directly in OpenJDK



EXPERIMENT #2: MODIFY OPENJDK

Steps for Experiment:

1. Specify a new bytecode, 0xcb asnap

→Triggers object snapshotting within the Java Virtual Machine

2. Modify the Java compiler (parse and generate phases)

→ Emit 0xcb when loading actual parameters declared w/modifier __snap__

3. Modify the HotSpot JVM’s bytecode interpreter

→ Snapshot object on operand stack when encountering 0xcb bytecode



WHAT IS THE RELATIVE PERFORMANCE?

• In this evaluation:

• Focused on steady-state performance

• Disabled JIT compilation (adapting c1 and c2 compilers are future work)

• Garbage collected before each measured operation

• Evaluation is x64-only due to native x64 assembly code

• Large & Small inputs evaluated.







PREVIOUS WORK SUMMARY

At the end:

1. Had a working prototype based on OpenJDK 10

→ Implemented __snap__ and 0xcb in javac and HotSpot JVM

2. That was performant

→ Relative to extant methods

3. And provided consistent semantics for all objects



CURRENT 
WORK



CURRENT RESEARCH QUESTIONS



PLAN OF CURRENT WORK

Rascal: Inject 

Annotations

Into Source

Annotations

Trigger 

Depth Check

R2. Graph 

Depth

Metrics

R1. ƒ()

Execute: 

Output Depth 

Metrics



FUTURE 
WORK



PLENTY OF WORK FOR THE FUTURE

Simplify 

Snapshot 

Load

Escape 

Analysis

C1 and C2 

Compilers Type 

Exclusions

Platform 

Independence

Bytecode 

Verification

Differential

Snapshots

Adapt 

Remaining 

JDK Tools



Q & A



THANK YOU


