On the Internal and External View of Graded Linear Logic

Preston Keel Harley Eades III

All data is not created equal

- Would you pass an integer around a program freely
- What about memory pointers

Getting to Grades: Linear Logic

- Linear Logic
 - Resource conscience
 - A used exactly once, !A used zero to many

$$\frac{\Gamma \vdash C}{\Gamma, !A \vdash C} \quad \text{Weak} \quad \frac{\Gamma, !A, !A \vdash C}{\Gamma, !A \vdash C} \quad \text{Cont}$$

$A \xrightarrow{} A \otimes A$ $A, A \xrightarrow{} A \otimes A$

 $!A, B \to B$ $!A \to A \otimes A \otimes A$

Getting to Grades: Bounded Linear Logic

- Adding specifications for resource reuse
- Aid in time complexity

Getting to Grades: Bounded Linear Logic

• Capture between one and any number of times

• $!A \rightarrow !_n A$ where A can be used up to a natural number, n, times

Graded Linear Logic

- Generalize reuse bound of BLL to an arbitrary $r \in R$ of a semiring (R,0, +,1,*) $!_rA$
- Two forms: externally graded and internally graded

Graded Linear Logic

- Externally graded $x_1 : A_1 \odot r_1, \dots, x_i : A_i \odot r_i \vdash t : B$ where $r \in R$ is of a resource algebra $(R, *, 1, +, 0, \leq)$
- Internally graded $x_1 : A_1, \ldots, A_i : x_i \vdash t : B$

• New type annotation, $\prod_r A$

Two Sides...Same Coin

 Inference rules of linear logic parallel rules for graded linear logic

$\Gamma, A \vdash B$	$!\Gamma \vdash B$	$\Gamma, A \vdash B$	$[\Gamma] \vdash B$
$\Gamma, !A \vdash B$	$!\Gamma \vdash !B$	$\overline{\Gamma, \bigsqcup_1 A \vdash B}$	$r * \Gamma \vdash \Box_r B$

• $\Box_r A$ when eliminated introduces a discharged formula $A \odot r$ into the context

Two Sides...Same Coin

- Internally graded context contain both linear, A, and discharged, $A \odot r$, hypotheses
- Internally graded system makes use of external grade information

Two Sides...Same Coin

- New sequent calculus Externally/Internally Graded Linear Logic
- Two fragments
 - Externally graded $X_1 \odot r_1, \ldots, X_i \odot r_i \vdash B$
 - Mixed externally/internally graded $(X_1 \odot r_1, \ldots, X_i \odot r_i); (A_1, \ldots, A_i) \vdash B$

How are they connected?

$$\frac{\Gamma_1, X \odot r, \Gamma_2 \vdash A}{\Gamma_1, F_r X, \Gamma_2 \vdash A} F_L \qquad \frac{\Gamma_1, A, \Gamma_2 \vdash B}{\Gamma_1, GA \odot 1, \Gamma_2 \vdash B} G_L$$

- $\Box_r A$ Can now be defined as $\Box_r A = F_r G A$
- Externally graded linear logic underlies internally graded linear logic

What can grades do?

 $A_{[2..4]} \to A \otimes A \otimes A$

Structural Rules

- Internally and externally graded systems precisely control resources by controlling weakening and contraction
 - Non-optional with respect to the logic
- Controlling exchange is often overlooked

Structural Rules: Exchange

- Useful when needing control over ordering
 - Mapping over lists, ordered communication
- Applications in software verification and interactive theorem proving

 $\Gamma_1, X \odot e(r_1), Y \odot e(r_2), \Gamma_2 \vdash_L A$ $\Gamma_1, Y \odot e(r_2), X \odot e(r_1), \Gamma_2 \vdash_L A$

 $\Gamma_1, X \odot e(r_1), Y \odot r_2, \Gamma_2 \vdash_L A$ $\Gamma_1, Y \odot r_2, X \odot e(r_1), \Gamma_2 \vdash_L A$

Structural Rules: Contraction and Weakening

 Generalize system further to make these rules optional

 $\begin{array}{ccc} \Gamma_1, \Gamma_2 \vdash A & 0 \in R \\ \hline \Gamma_1, X \odot 0, \Gamma_2 \vdash A \end{array} & \begin{array}{ccc} \Gamma_1, X \odot r_1, X \odot r_2, \Gamma_2 \vdash A & (r_1 + r_2) \in R \\ \hline \Gamma_1, X \odot (r_1 + r_2), \Gamma_2 \vdash A \end{array} \\ \end{array}$

Controlling structural rules

- Contraction logic no weakening
- Affine logic no contraction
- Non-commutative and commutative versions

Where we go from here

- Understanding of substructural type systems
- Higher order systems such as dependent types
- Granule

Questions ?